In-Operando Evaluation of SOFC Cathodes for Enhanced ORR Activity and Durability

Eric D. Wachsman University of Maryland Energy Research Center

www.energy.umd.edu

Gil Cohn

US Department of Energy, National Energy Technology Laboratory, Contract No. FE0026190 10/01/2015-06/30/2017

University of Maryland, College Park, USA

In-Operando Evaluation of SOFC Cathodes for Enhanced ORR Activity and Durability

Eric D. Wachsman University of Maryland Energy Research Center

www.energy.umd.edu

Gil Cohn

US Department of Energy, National Energy Technology Laboratory, Contract No. FE0026190 10/01/2015-06/30/2017

Lourdes Salamanca-Riba, Christopher Pellegrinelli, Yi-Lin Huang, Joshua Taillon US Department of Energy, National Energy Technology Laboratory, Contract No. FE0009084 09/01/2012-08/31/2015

University of Maryland, College Park, USA

Background - Fundamental ORR Mechanisms

- Switch gas to separate solid vs gas species contribution to mechanism

MARYLAND

Energy Research Center

Background - Fundamental ORR Mechanisms

- Switch gas to separate solid vs gas species contribution to mechanism

MARYLAND

Energy Research Center

Fundamental ORR Mechanisms - O2 Dissociation

Developed 1:1 Isothermal Isotope Exchange (IIE) to give specific O₂-dissociation rates

Fundamental ORR Mechanisms - O2 Dissociation

Time (minutes)

Increase in [¹⁶O¹⁸O] with temperature until achieves 50%(maximum statistical conversion)

MARYLAND

Fundamental ORR Mechanisms - O₂ Dissociation

ORR Reaction Mechanisms in Presence of H₂O and CO₂

Energy Research Center

ORR Reaction Mechanisms in Presence of H₂O and CO₂

ISTPX of LSCF in 25000ppm O_2 with 6000ppm D_2O

O₂ exchange with lattice ¹⁸O

D₂O exchange with lattice ¹⁸O

ISTPX of LSCF in 25000ppm O2 with 6000ppm D2O

O₂ exchange with lattice ¹⁸O

Mass of:
$${}^{18}O = 18$$

 $H_2{}^{16}O = 18$
 $D_2{}^{16}O = 20$
 $D_2{}^{18}O = 22$

D₂O exchange with lattice ¹⁸O

D₂O and O₂ exchange with lattice ¹⁸O

ISTPX of LSCF in 25000ppm O₂ with 6000ppm D₂O

Energy Research Center

Temperature and PO₂ Dependence of LSCF in D₂O

Temperature and PO₂ Dependence of LSCF in D₂O

temperature, and concentration

Direct observation of enhanced water and carbon dioxide reactivity on multivalent metal oxides and their composites[†]

Water Exchange on LSCF vs LSCF-GDC Composite Cathodes

Direct observation of enhanced water and carbon dioxide reactivity on multivalent metal oxides and their composites†

Water Exchange on LSCF vs LSCF-GDC Composite Cathodes

 LSCF composite significantly broadens temperature range of water exchange dominance

COMMUNICATION

Energy & Environmental Science

> View Article Onl View Journal | View Issu

Direct observation of enhanced water and carbon dioxide reactivity on multivalent metal oxides and their composites[†]

Water Exchange on LSCF vs LSCF-GDC Composite Cathodes

- LSCF composite significantly broadens temperature range of water exchange dominance
- Demonstrating importance of TPBs and co-existence of O-dissociation and O-incorporation phases
 Energy & Environmental Science

MARYLAND

Energy Research Center

COMMUNICATION

Direct observation of enhanced water and carbon dioxide reactivity on multivalent metal oxides and their composites[†]

Direct observation of enhanced water and carbon dioxide reactivity on multivalent metal oxides and their composites†

 LSM-YSZ composite demonstrates much greater water exchange than LSM or YSZ at much lower temp

Direct observation of enhanced water and carbon dioxide reactivity on multivalent metal oxides and their composites[†]

- LSM-YSZ composite demonstrates much greater water exchange than LSM or YSZ at much lower temp
- Composite effect for LSM-YSZ much greater than for LSCF-GDC

MARYLAND Energy Research Center

Direct observation of enhanced water and carbon dioxide reactivity on multivalent metal oxides and their composites[†]

- LSM-YSZ composite demonstrates much greater water exchange than LSM or YSZ at much lower temp
- Composite effect for LSM-YSZ much greater than for LSCF-GDC
- Demonstrating importance of TPBs and co-existence Energy & ۲ Science of O-dissociation and O-incorporation phases

ARYLAND

Energy Research Center

COMMUNICATION

Direct observation of enhanced water and carbor dioxide reactivity on multivalent metal oxides and their composites[†]

Water & CO₂ Exchange on LSM vs LSM-YSZ Cathodes

- XPS shows LSM-YSZ composite has decreased Mn oxidation state relative to LSM which are compensated for by increase in local V₀ concentration
- EELS shows change in Mn oxidation state is localized to LSM-YSZ interface

Energy & Environmental Science

COMMUNICATION

View Article Or View Journal | View Is

Direct observation of enhanced water and carbon dioxide reactivity on multivalent metal oxides and their composites[†]

Water & CO₂ Exchange on LSM vs LSM-YSZ Cathodes

- XPS shows I SM-YS7 composite has decreased Mn oxidation state relative to LSM which are compensated for by increase in local Vo concentration
- EELS shows change in Mn oxidation state is localized to LSM-YSZ interface

- LSM surface dissociates D₂O and CO₂ but bulk does not incorporate O
- In LSM-YSZ composite dissociated O transports to YSZ interface for incorporation

Energy &

Science

their composites[†]

Comparison of ISTPX with EIS for LSCF-GDC in H₂O

Comparison of ISTPX with EIS for LSCF-GDC in H₂O

MARYLAND Energy Research Center The presence of 3% H₂O effects the low frequency arc at 450° C but not at 750° C consistent with the results obtained from ISTPX.

Comparison of ISTPX with EIS for LSCF-GDC in CO₂

Comparison of ISTPX with EIS for LSCF-GDC in CO₂

MARYLAND

Comparison of ISTPX with EIS for LSCF-GDC in CO₂

ORR Reaction Mechanisms in Presence of Cr

ACS APPLIED MATERIALS

Research Article

www.acsami.org

Chromium Poisoning Effects on Surface Exchange Kinetics of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$

Yi-Lin Huang,[†]^{\circ} A. Mohammed Hussain,[†] Christopher Pellegrinelli,[†] Chunyan Xiong,^{†,‡,§} and Eric D. Wachsman^{*,†}^{\circ}

LSCF exposed to air flowing over Crofer 22 for 1 week

ORR Reaction Mechanisms in Presence of Cr

ACS APPLIED MATERIALS & INTERFACES

Research Article

www.acsami.org

Chromium Poisoning Effects on Surface Exchange Kinetics of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$

Yi-Lin Huang,[†]^{\circ} A. Mohammed Hussain,[†] Christopher Pellegrinelli,[†] Chunyan Xiong,^{†,±,§} and Eric D. Wachsman^{*,†}^{\circ}

LSCF exposed to air flowing over Crofer 22 for 1 week

ACS APPLIED MATERIALS & INTERFACES

Research Article

www.acsami.org

Chromium Poisoning Effects on Surface Exchange Kinetics of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$

Yi-Lin Huang,[†][©] A. Mohammed Hussain,[†] Christopher Pellegrinelli,[†] Chunyan Xiong,^{†,‡,§} and Eric D. Wachsman^{**†}[©]

Research Article

ACS APPLIED MATERIALS

Chromium Poisoning Effects on Surface Exchange Kinetics of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$

Yi-Lin Huang,[†][©] A. Mohammed Hussain,[†] Christopher Pellegrinelli,[†] Chunyan Xiong,^{†,‡,§} and Eric D. Wachsman^{**†}[©]

Research Article

ACS APPLIED MATERIALS

Chromium Poisoning Effects on Surface Exchange Kinetics of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$

Yi-Lin Huang,[†][©] A. Mohammed Hussain,[†] Christopher Pellegrinelli,[†] Chunyan Xiong,^{†,±,§} and Eric D. Wachsman^{**†}[©]

Research Article

ACS APPLIED MATERIALS

Chromium Poisoning Effects on Surface Exchange Kinetics of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$

Yi-Lin Huang,[†][©] A. Mohammed Hussain,[†] Christopher Pellegrinelli,[†] Chunyan Xiong,^{†,‡,§} and Eric D. Wachsman^{**†}[©]

Developed multiple (IIE, 1:1 IIE, ISTPX) O-isotope exchange techniques that enabled us to:

Developed multiple (IIE, 1:1 IIE, ISTPX) O-isotope exchange techniques that enabled us to:

• Determine fundamental ORR rates for LSCF, LSM, and their composites and for first time was able to directly measure O₂ dissociation

Reaction Kinetics of Gas–Solid Exchange Using Gas Phase Isotopic Oxygen Exchange

Yi-Lin Huang, Christopher Pellegrinelli, and Eric D. Wachsman*

Developed multiple (IIE, 1:1 IIE, ISTPX) O-isotope exchange techniques that enabled us to:

- Determine fundamental ORR rates for LSCF, LSM, and their composites and for first time was able to directly measure O₂ dissociation
- Demonstrate H₂O and CO₂ actively participate in ORR for both LSCF and LSM and identified temperature and gas composition regions where H₂O dominates O₂ surface exchange and where they are less important
- Identify significant composite cathode effect on surface exchange with H₂O and CO₂

Energy Research Center

Developed multiple (IIE, 1:1 IIE, ISTPX) O-isotope exchange techniques that enabled us to:

- Determine fundamental ORR rates for LSCF, LSM, and their composites and for first time was able to directly measure O₂ dissociation
- Demonstrate H₂O and CO₂ actively participate in ORR for both LSCF and LSM and identified temperature and gas composition regions where H₂O dominates O₂ surface exchange and where they are less important
- Identify significant composite cathode effect on surface exchange with H₂O and CO₂
- Demonstrate Cr vapor exposure decreases O₂ dissociation and exchange rate and is made worse in ambient moisture

Chunyan Xiong,^{a,b} Joshua A. Taillon,^b Christopher Pellegrinelli,^{b,*} Yi-Lin Huang,^{b,*} Lourdes G. Salamanca-Riba,^b Bo Chi,^a Li Jian,^a Jian Pu,^{a,z} and Eric D. Wachsman^{b,}

Developed multiple (IIE, 1:1 IIE, ISTPX) O-isotope exchange techniques that enabled us to:

- Determine fundamental ORR rates for LSCF, LSM, and their composites and for first time was able to directly measure O₂ dissociation
- Demonstrate H₂O and CO₂ actively participate in ORR for both LSCF and LSM and identified temperature and gas composition regions where H₂O dominates O₂ surface exchange and where they are less important
- Identify significant composite cathode effect on surface exchange with H₂O and CO₂
- Demonstrate Cr vapor exposure decreases O₂ dissociation and exchange rate and is made worse in ambient moisture

Energy Research Center

but all done under absence of applied bias with no charge transfer...

- Develop *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties, under operating conditions of applied voltage / current.
- Determine surface exchange mechanisms and coefficients using *in-operando* ¹⁸O-isotope exchange of LSM and LSCF powders, and their composites with YSZ and GDC.

- Develop *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties, under operating conditions of applied voltage / current.
- Determine surface exchange mechanisms and coefficients using *in-operando* ¹⁸O-isotope exchange of LSM and LSCF powders, and their composites with YSZ and GDC.

Energy Research Center reactor to measure cathode ORR under applied bias

in-operando Isotope Exchange Reactor

• Convert *in-situ* heterogeneous catalysis set-up to *in-operando* reactor to measure cathode ORR under applied bias

 Now able to *in-operando* determine cathode ORR by simultaneous cell current-voltage behavior under applied bias with *in-situ* heterogeneous ¹⁸O-isotope exchange **Dxygen concentration / ppm** 20000 ¹⁶O₂ 15000 16O18O - ¹⁸O₂ 10000 Total Oxygen 5000 0 20 0 10 30 40 Time / min.

 Now able to *in-operando* determine cathode ORR by simultaneous cell current-voltage behavior under applied bias with *in-situ* heterogeneous ¹⁸O-isotope exchange

MARYLAND

Energy Research Center

Dxygen concentration / ppm _-300m∨ 0m V 20000 ¹⁶O₂ 15000 16O18O - ¹⁸O₂ 10000 Total Oxygen 5000 0 20 0 10 30 40 Time / min.

Time / min.

Energy Research Center

• *In-operando* determination of LSCF surface exchange as a function of cathodic bias

30000

25000

20000

- In-operando determination of LSCF surface exchange as a function of cathodic bias
- Follows Tafel relationship (η vs Ln(I))

¹⁶O¹⁸O

(a)

MARYLAND **Energy Research Center**

- *In-operando* determination of LSCF surface exchange as a function of cathodic bias
- Follows Tafel relationship (η vs Ln(I))

- *In-operando* determination of LSCF surface exchange as a function of cathodic bias
- Follows Tafel relationship (η vs Ln(I))

- *In-operando* determination of LSCF surface exchange as a function of cathodic bias
- Follows Tafel relationship (η vs Ln(I))

 Demonstrated kinetic difference is from IIE applied potential and not Faradaic O₂ pumping (I_e)
 MARYLAND

Energy Research Center

Tentative Model

 $O_{2(gas)} \Leftrightarrow 2O + 4e^{-} \Leftrightarrow 2O^{2-}$

Tentative Model

$$O_{2(gas)} \Leftrightarrow 2O + 4e^{-} \Leftrightarrow 2O^{2-}$$

• Under no polarization, the fitting of accumulation profiles to obtain exchange rate (R^*_{ex}) : $\frac{M(t)}{M_{\infty}} = 1 - \exp(-R^*_{ex}t) + \underbrace{M^*_{ex}}_{0} = \underbrace{1 - \exp(-R^*_{ex}t)}_{0} + \underbrace{M^*_{ex}}_{0} = \underbrace{1 - \exp(-R^*_{ex}t)}_{0} + \underbrace{1 - \exp($

Gil Cohn, Eric D.Wachsman et al. Journal of The Electrochemical Society, **163** (2016)

Time / min

Tentative Model

$$O_{2(gas)} \Leftrightarrow 2O + 4e^{-} \Leftrightarrow 2O^{2-}$$

• Under no polarization, the fitting of accumulation profiles to obtain exchange rate (R^*_{ex}) :

$$\frac{M(t)}{M_{\infty}} = 1 - \exp\left(-R_{ex}^{*}t\right) \blacktriangleleft$$

• The 3D exchange rate coefficient, k_{ex} , under polarization (*D* – particle diameter):

$$k_{ex} = \frac{D}{6} \left(R_{ex}^* - \frac{I}{2FN} \right)$$

Gil Cohn, Eric D.Wachsman et al. Journal of The Electrochemical Society, **163** (2016)

Tentative Model

$$O_{2(gas)} \Leftrightarrow 2O + 4e^{-} \Leftrightarrow 2O^{2-}$$

• Under no polarization, the fitting of accumulation profiles to obtain exchange rate (R^*_{ex}) :

$$\frac{M(t)}{M_{\infty}} = 1 - \exp\left(-R_{ex}^{*}t\right) \blacktriangleleft$$

• The 3D exchange rate coefficient, k_{ex} , under polarization (*D* – particle diameter):

$$k_{ex} = \frac{D}{6} \left(R_{ex}^* - \frac{I}{2FN} \right)$$

Gil Cohn, Eric D.Wachsman et al. Journal of The Electrochemical Society, **163** (2016)

• Implementing the Tafel relation between I and η :

$$I = I_0 \exp(C\eta); \ C = \frac{\alpha ZF}{RT}$$

$$k_{ex} = \frac{D}{6} \left(R_{ex}^* - \frac{I_0 \exp(C\eta)}{2FN} \right)$$

- First ever direct *in-operando* measured relationship between surface exchange coefficient and electrochemical overpotential
 - data from *in-operando* experiment and lines are equation

- demonstrated for both LSCF and LSM

• Developed an *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties under operating conditions of applied voltage / current

- Developed an *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties under operating conditions of applied voltage / current
- For the first time determined the oxygen surface exchange coefficient (*k_{ex}*) *in-operando* as a function of applied electric potential with *in-situ* ¹⁸O-isotope exchange

- Developed an *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties under operating conditions of applied voltage / current
- For the first time determined the oxygen surface exchange coefficient (*k_{ex}*) *in-operando* as a function of applied electric potential with *in-situ* ¹⁸O-isotope exchange
- Developed direct relationship between electrochemical (I-V) performance and k_{ex} as well as unifying theory to relate isotope exchange obtained k_{ex} to other electroanalytic (e.g., ECR) techniques

Phase 1 Summary/Conclusions

- Developed an *in-operando* apparatus for the study of SOFC cathode oxygen surface exchange properties under operating conditions of applied voltage / current
- For the first time determined the oxygen surface exchange coefficient (*k_{ex}*) *in-operando* as a function of applied electric potential with *in-situ* ¹⁸O-isotope exchange
- Developed direct relationship between electrochemical (I-V) performance and k_{ex} as well as unifying theory to relate isotope exchange obtained k_{ex} to other electroanalytic (e.g., ECR) techniques
- This technique now enables the direct determination of fundamental ORR mechanisms (such as k_{dissociation} and k_{exchange}) and the affect of H₂O, CO₂, and Cr and other contaminants on ORR kinetics and degradation mechanisms as a function of applied polarization

